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The objectives and challenges
• Increase RHIC 

luminosity: For Au-Au 
at 100 GeV/A by ~10

• Cool polarized p at 
injection

• Reduce background 
due to beam loss

• Allow smaller vertex

• Cooling rate slows in 
proportion to γ5/2.

• Energy of electrons 
54 MeV, well above 
DC accelerators, 
requires bunched e.

• Need exceptionally 
high electron bunch 
charge and low 
emittance.



R&D issues
• Understanding the cooling physics in a new regime to 

reduce uncertainty 
– understanding bunched beam, recombination, IBS, disintegration
– what is the exact form of the friction force, use direct simulations
– cooling dynamics simulations with some precision
– benchmarking experiments
– stability issues

• Developing a high current, energetic, magnetized, cold 
electron beam. Not done before
– Photoinjector  (inc. photocathode, laser, etc.) 
– ERL, at x20 of state-of-the-art
– Beam dynamics of high-charge magnetized beam

• A very long, super-precise solenoid (30 m long, 2 Tesla, 
8x10-6 error) – if we used magnetized cooling.



Impact of cooling theory
• Significant progress made in theory, leading to 

significant changes in the cooler design, e.g. 
superconducting gun.

• Two alternative cooling approaches are being 
considered:
– Magnetized cooling
– Non-magnetized cooling

• Consequence: Uncertainty in beam parameters
• Consequence - Some milestones delayed:

– Start to end simulation
– Completion of gun
– Superconducting solenoid prototype.



Status of IBS before 2004, and 
2004-2005 experiments

• IBS in RHIC was 
estimated based on 
average growth of all 
bunches.

• In cooling simulations 
simplified approximate 
formulae were used.

- Heating only from IBS.
- Measured bunch length, 

emittance.
- Measured bunches with 

various intensities and 
emittances. 

- Detailed comparison of 
various theoretical 
models of IBS.

- Benchmarking of theory 
accomplished.



RHIC IBS experiment (2005)
Measured both planes, both rings, fully coupled Good 

agreement to theory, but over limited time span
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VORPAL code (Tech-X, Colorado): 
Simulate the friction in binary collisions
Early 2002 initiated SBIR with Tech-X. Goals:

– Obtain accurate friction and diffusion coefficients
• Resolve discrepancies in analytical theory
• Determine validity of Z2 scaling
• Understand effects of space charge on friction
• Understand the effects of magnetization

– from weak to strong 
– effect of field errors

• What happens at small Coulomb log, 1 ~ 2
• Provide table of coefficients for dynamic codes



Uncertainty in the experimental and 
theoretical scene

Y-N. Rao et al.: CELSIUS, Sweden’2001, longitudinal friction:

D-S-M

VP



VORPAL’s Friction force, 
RHIC parameters

very good magnetization: 
B=5T; Te,tr=400 eV, Vion, trans=0

D-S

V-P

VORPAL Note that VORPAL slope
at low velocity is 3x theory.

D-S: Derbenev-Skrinsky analytic
V-P: Vasily Parkhomchuk empiric 

Ion velocity

Drag
force



VORPAL guidance

Under good magnetization:
Agreement with D-S

Under poor magnetization:
Goes beyond theory’s reach

Ion angle relative to solenoid field, radians

Drag
force

Drag
force

VORPAL 
results

D-S

V-P



Summary - VORPAL
- Limited benchmarking of analytic formulae 

for magnetized cooling made
- Simulations of RHIC parameters started
- Benchmarking with experiments started
- The code is powerful, break-through 

results, objectives will be met.



Cooling dynamics codes

• Collaborations put in place with BINP 
Novosibirsk in 2000 and JINR Dubna in 2001.

• We got the cooling dynamics codes SimCool
from BINP and BetaCool from JINR.

• Years of development spent to evolve the codes 
to RHIC needs and gain confidence, including 
benchmarking between the two codes. 

• Many physics effects/models were added or 
improved and benchmarked. 



IBS models in dynamic codes 
benchmarked and extended

• Accurate models of IBS for Gaussian 
distributions implemented & benchmarked in the 
JINR BetaCool code:
• Martini’s model
• Bjorken-Mtigwa model

• IBS models under cooling: still to be 
benchmarked:
• Detailed (by Burov)
• Core-tail (Fedotov et al.)
• Bi-Gaussian (by Parzen)



BetaCool: Luminosity with / without 
magnetized cooling, Au 100 GeV/A

<L>=7*1027
with cooling

no cooling

E-cooling: factor of 10 
increase in average
luminosity per store

no cooling

Time into store (seconds)
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Non-magnetized cooling, with
Q=5nC, εN=3µm, σe=4.5mm

<L>=7*1027

Time into store (seconds)

Luminosity, increased x10 Number of particles in bunch



Beam experiments towards high-
energy electron cooling

Beam experiments on low-energy coolers:
• Accurate measurement of cooling force and code 

benchmarking.
• Benchmark new models of IBS required to treat 

accurately a distribution shrinking under  cooling.
• Create conditions expected in High Energy Cooler and 

study
• magnetized cooling with small Coulomb logarithm
• effect of solenoid errors

• Two runs produced a wealth of results.



Fitting Veff from basic principles, 
March 5 data:  B=0.12T, Ie=300mA
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Slope measured accurately.
Veff measured accurately, and 
found consistent with magnet 
errors (inside range).

Fit to Derbenev analytic theory.
Slope larger than theory by factor ~3.
Indication for agreement with VORPAL.

Drag force, average over beam
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Schematic Layout of 
Magnetized Cooler

Use two solenoids with opposing fields to eliminate coupling in the ion beam. 
A quadrupole matching section between the solenoids maintains magnetization.

Stretcher / compressor 
with large M56 
and zero M51, M52

Merge beams with two 
weak dipoles with
solenoid  
focusing to minimize 
dispersion and 
avoid coupling.

RF frequency: 703.5 MHz
Charge: 20nC/bunch
Repetition frequency: 9.4 MHz

( )22 500 10S SB G mmσ =
mr.mm380~M



The electron machine R&D

• Beam dynamics 
• Photocathodes, including diamond 

amplified photocathodes
• Superconducting RF gun
• Energy Recovery Linac (ERL) cavity
• ERL demonstration



Gun and ERL



Emittance, 20 nC, magnetized, 
at end of linac
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linac’s exit is 100deg.keV 

Final transverse emittance 
(rms, normalized) is about 35µ.
Following multi-variable optimization, 28µ.
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R&D ERL under construction
To study the issues of high-brightness, 
high-current electron beams as needed for 
RHIC II and eRHIC.



BNL ERL original developments
Diamond amplified photocathode
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BNL ERL original developments

Ampere-class superconducting RF gun
 NPRINT= 1000  Z from  0.000000     to  30.00000
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BNL ERL original developments
SRF ERL cavity for ampere-class current.



BNL ERL original developments

Merging optics for ERL at high-charge
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Sources of Funding, k$
FY03 FY04 FY05 FY06 (Exp./Req.)

DOE 900 2000 2000 2000/3000
BNL Prog. Dev/GPP 600 1200  1200 600
SBIR Tech-X 100 850  850
SBIR AES 100 750
JTO Cryo-module 350 300 100
ONR Photo-cathode 533 600
JTO ERL 500 500
Navy Photoinjector 600 1000

Total 1950 4883 5350 5450

Significant saving and a better R&D program are made possible 
by utilizing diverse resources.



ERL Material Funding Plan

in $K

2.0 ERL
Material 

& 
Services

Cumulative 
through 

FY05
FY06 FY07 FY08

2.1 Superconducting R.F.Cavity 1714 1714 0 0 0
2.2 RF Systems 4165 2280 1539 347 0
2.3 Injector Systems 2637 744 1393 500 0
2.4 Cryogenics Systems 508 382 126 0 0
2.5 Vacuum Systems 717 0 577 140 0
2.6 Magnet Systems 340 0 170 170 0
2.7 Magnet Electrical Systems 551 0 551 0 0
2.8 Electron Beam Dump Systems 241 0 0 241 0
2.9 Beam Instrumentation 534 5 0 530 0

2.10 Control Systems 343 0 0 0 343
2.11 Solenoid 1067 0 0 0 1067
2.12 Conventional Facilities 290 290 0 0 0
2.13 Safety Systems 81 81 0 0 0
2.14 E-Cooling Installation 257 60 64 133 0
2.15 Project Services 518 156 150 133 79

Total Project 13963 5713 4569 2192 1489



E Cooling Labor Effort
(FTE’s)

• Electron Cooling 
Group

• Other (matrix)

FY04 FY05

5.1 6.8

1.0 2.9



Timeline – funding driven.
Need front loaded distribution to complete 

nearly 1 year earlier.



Summary
• A vigorous and sweeping R&D program was initiated a 

few years ago and is making good progress.
• Our theory, simulation and benchmarking experiments 

are close to providing us with a precise set of 
requirements for electron cooling of RHIC.

• Our electron beam dynamic simulations show that we 
should be able to generate the required beam.

• Progress made on experimental program to demonstrate 
the critical electron beam generating components.

• We conclude that our luminosity increase goal for RHIC-
II (factor of 10) can be achieved.

• Moving $1M from FY’08 to FY’06 will save the program 
about one year.


